
Packet Processing with Blocking For Bursty Traffic
on Multi-thread Network Processor

Yeim-Kuan Chang and Fang-Chen Kuo

 Department of Computer Science and Information Engineering
National Cheng Kung University

701 Tainan, Taiwan R.O.C.
ykchang@mail.ncku.edu.tw

p7895107@mail.ncku.edu.tw

Abstract—It is well-known that there are bursty accesses in
network traffic. It means a burst of packets with the same
meaningful headers are usually received by routers at the same
time. With such traffic, routers usually perform the same
computations and access the same memory location repeatedly.
To utilize this characteristic of network traffic, many cache
schemes are proposed to deal with the bursty access patterns.
However, in the multi-thread network processor based routers,
the existing cache schemes will not suit to the bursty traffic. Since
all threads may all deal with the packets with the same headers, if
the former threads do not update the cache entries yet, the
subsequent threads still have to repeat the computations due to
the cache miss.

In this paper, we propose a cache scheme called B-cache for
the multi-thread network processors. B-cache blocks the
subsequent threads from doing the same computations which are
being processed by former thread. By applying B-cache, any
packet processing tasks with high locality characteristic, such as
IP address lookup, packet classification, and intrusion detection,
can avoid the duplicate computations and hence achieve a better
packet processing rate. We implement the proposed B-cache
scheme on Intel IXP2400 network processor, the experimental
results shows that our B-cache scheme can achieves the line speed
of Intel IXP2400.

Keywords-multi-thread; network processor; cache; and Intel
IXP2400

I. INTRODUCTION

In the multi-thread network processor, such as Intel
IXP2400 [4], a single “Micro Engine” (ME) is the basic
execution unit to a packet processing task (e.g., IP address
lookup, packet classification, intrusion detection, etc.). A
single ME of IXP2400 has eight threads which can be
executed concurrently. Thus, in order to increase the
performance, a single ME can do the packet processing task
for at most eight different packets concurrently. In packet
processing tasks, we may only focus on the subset of header
fields (i.e. meaningful header). On the other hand, the network
traffic usually appears with the burst pattern (i.e., a burst of
packets with the same meaningful header are arriving at the
same time), lots of packets need to be treated as the same way.
For example, in IP address lookup, if the destination addresses
of the incoming packets are the same, these packets should be
forwarded to the same next hop. With the burst traffic, it will

cause the increases of the duplicate computations and the
number of unnecessary memory accesses. To avoid this
wasted overhead, we may implement a naive cache for the
packet processing task. The naive cache caches the results of
the packet processing task for the former packets. For the
subsequent packets with the same meaningful header, the
cache hits can avoid the duplicate computations and hence
increase the efficiency.

However, the naive cache described above may still not suit
to the burst traffics. Since the traffics arrive in burst, all
threads of a ME may all deal with the packets with the same
meaningful header. If the former thread does not update the
cache entry yet, the subsequent threads with the same
meaningful header will still have to repeat computations due
to the cache miss. This overhead is proportional to the number
of MEs we allocate to the task. In other words, the more MEs
we allocate to the packet processing task the more inefficiency
we suffer. This paper is mainly focusing on solve the above
problem. We propose a cache scheme called B-cache (B
stands for blocking). B-cache blocks the threads which process
the non-first-of-the-flow packets (i.e., subsequent packets)
from repeat the same packet processing task as the former
thread. Hence, the duplicate computation can be avoided and
the higher packet processing rate can be achieved.

The rest of paper is organized as follows. Section II
presents the related works. The proposed B-cache is
introduced in Section III. The implementation issues of B-
cache and its several variants are described in Section IV. An
extensive performance results are shown in Section V. Finally,
we conclude the paper in Section VI.

II. RELATED WORK

A. Cache Design for Packet Processing on Network
Processor

Several studies focused on cache schemes for the network
processor architecture. In [6] and [8], cache mechanisms are
evaluated on Intel IXP1200 network processor. [6] is focused
on the latency hiding techniques that the effect of multi-thread
and cache are considered separately. On the other hand, [8]
focus on the effect of cache to the different packet processing
tasks. More parameters of cache are considered in the study.

Authors of [1] proposed the digest cache to increase the
performance of packet classification. Different to traditional
cache which stores the complete tag, the scheme stores only a
hash of the tag. Thus, with the scheme, larger size of cache
can be supported. Although the scheme can be used as
independent cache, it can acts as the initial filter of exact
match cache. The two levels cache architecture can solve the
mismatched problem results from not to store the complete tag.

A hybrid cache scheme for network processor was proposed
in [7]. Packets with the same source address, destination
address, source port, destination port and protocol are said
they belong to the same flow. With a traditional cache which
cached the result of packet processing, the authors also
proposed a cache which cached the additional information
shared by the packets belong to the same flow. The authors
proposed the cache which cached such information together in
one cache entry to utilize the spatial locality.

This paper focus on avoid the problem which several
threads duplicate computing to the packets belong to the same
flow before the cache entry is updated by one of them. The
problem will occur in multi-thread network processor
environment. We try to delay the processing of such packets
using the proposed scheme. As the redundant memory access
and computing can be reduced, higher throughput can be
achieved.

B. Implemented Packet Processing Scheme

The proposed cache scheme is suitable for any packet
processing tasks with high locality characteristic. In this paper,
we choose the HBSPC (hierarchical binary prefix search) [3]
packet classification scheme for the evaluated packet
processing task. Other well-known packet classification
schemes can be found in [11]. Basically, [3] is extended from
the ip lookup scheme BPS (binary prefix search) [2]. HBSPC
use hierarchical structure to handle typical 5-dimensional rule
tables. The two prefix fields of the rule tables are sorted and
stored in the arrays which become the first and second level of
the hierarchical structure. The last three fields are stored in the
linked list pointed by the second level of the hierarchical
structure.

The searching operation of HBSPC is as follows: The first
step is to binary search the whole first level of hierarchical
structure to find the LMP (longest matching prefix). The LMP
has stored the information of search space of next level
structure. With that, we can again binary search in the second
level to find the LMP in the second level. Again, with the
LMP, we can obtain the searching space in the third level
structure. Finally, we can linear search the linked list to find
the highest priority rule for the result.

To simplify the implementation, the HBSPC mentioned
here is the basic version. The author of HBSPC has also
proposed the improved version which requires less memory.
The further detail can be found in [3].

III. PROPOSED CACHE SCHEMES

Network traffic has the busty access pattern. It is easy to
implement a naïve cache scheme to handle such traffic to
improve the overall performance. For an entry of a naïve

cache, we at least have two main fields: tag and result. If the
corresponding fields of subsequently packets matched the
cached tag of the former packet, then the previous packet
processing result, can be returned directly without further
compute again. It is possible that the field tag is composed of
several sub-fields. Obviously, the contents of the two fields
should be different for different packet processing tasks. For
ip lookup problem, the tag is the destination address of the
packet while the result is the next-hop that the packet should
forward to. For 5-dimensional packet classification problem,
the field tags are source address, destination address, source
port, destination port, and the protocol while the field result is
the action which the packet should be treated.

In this paper, we don’t focus the cache algorithm such as
cache replacement policies or the degree of set associative.
Thus the proposed B-Cache is an extension of the naïve cache.
For the convenient, we will use the direct-mapped cache
design through this paper. It is still easy to extend the design
in this paper to implement different cache algorithms.

The main idea of this paper is that we hope to process the
packet of the busty traffic only once. In other words, we only
process the former packet and we block (i.e. delay) the
subsequent packets of the busty traffic to be processed until
the thread which processes the former packet has updated the
cache. To achieve this, the B-Cache has the additional field
if_blocking. The main function of this field is to indicate the
former packet has been processing currently. The tag and
result of the cache entry will be updated by the former thread
after the processing is finished.

To indentify which packet is being processing, the former
thread sets the field if_blocking with the tag of the packet and
clears the field after the processing is finished. The field can
be viewed as the second tag of the cache entry which enables
other threads to identify what packet is being processing. The
content to be stored in the field is related to the packet
processing task. A thread can detect which kinds of packet
(former or subsequent ones) it is processing currently when it
checks the field for the first time. For a thread which process
the subsequent packet, it can detect the processing to the
former packet is finished by check the same field continually.
Because our goal is that we only process the former packet, so
the thread should block the subsequent packets to be processed

01 Packet_Processing_Procedure() {
02 if tag is matched // Case 1
03 return result;
04 else if if_blocking is set { // Case 2
05 blocking the packet until if_blocking is clear
06 continue
07 }
08 else { // Case 3
09 set if_blocking
10 process the packet
11 update tag and result
12 clear if_blocking
13 }
14 }

Figure 1. Searching Procedure of B-Cache

until the cache entry is updated. Figure 1 shows the packet
processing procedure of the proposed B-Cache which
described as follows:

Case 1: When a thread obtains a packet, it should checks if

the corresponding fields of the packet have matched the tag
within the cache entry first. If the result is “true” (i.e. cache
hit), the cached result will return and the processing to that
packet is finished (Line 02~03).

Case 2: If the cache is not hit, the thread should check if the
field if_blocking has been set. If the result is “true”, it means
the packet belongs to the subsequent packets. So, the thread
should not process the packet immediately. Until block the
packets to be processed for some period, the thread can re-
check the field to determine if there is necessary to block the
packet again. If the result is not, the thread is free to process
the packet using the cached result (Line 05~06).

Case 3: If the cache is not hit and the field if_blocking is
not set, the packet should belong to the former packet. It
means that we have to process the packet actually. Before the
real apply process operation to the packet, the thread needs to
set field if_blocking using the tag of the packet to prevent
subsequent packets go into the same step. After the processing
is finished, the thread needs to update the tag and result of the
cache entry to let subsequent packets can use the result
directly. More important, the thread needs to clear the field
if_blocking to unblock the blocked packets (Line 09~12).

We describe some of issues when we implement the
proposed B-Cache and present the design we adopt in Section
IV.

IV. IMPLEMENTATION ISSUE

A. Intel IXP2400 Hardware Brief

The Intel IXP2400 network processor has an ARM
compatible XScale core and eight Micro Engines (ME) which
can work in parallel or pipeline for processing packets in high
speed. Each ME has eight threads which can execute
concurrently to utilize the resource [4].

There are four kinds of memory units different in sizes and
speeds that can be accessed by IXP2400 MEs. They are Local
Memory, Scratchpad, SRAM and DRAM. Each ME has
640*4 Bytes Local Memory which is private to other MEs.
Local Memory is the fastest memory unit. Each IXP2400 chip
has 16 KB scratchpad which is the largest on-chip memory
interface shared among MEs. DRAM is the largest and
slowest memory interface of IXP2400. Although IXP2400
only supports one channel of DRAM, however, IXP2400
supports two channels of SRAM interfaces. The speed and
size of SRAM are in the middle of Scratchpad and DRAM.

B. Resource Allocation

As IXP2400 has eight MEs, we allocate one for receiving
packet, and another for transmitting packet. Tests we have
done show that such setting is sufficient to achieve the
maximum speed of IXP2400. For the reason, we are free to
use the remained six MEs for implementing the evaluated
cache schemes. Briefly, the forwarding rate will increase with

the number of MEs we use, until the limitation of the scheme
or maximum speed of IXP2400 is achieved.

We allocate SRAM for holding the data structure of
evaluated packet processing scheme due to the memory
requirement of the HBSPC. Besides, we use the scratchpad as
scratch ring to implement inter-ME communication while the
DRAM is used as packets buffer.

It is an issue of using which memory interface to hold the
B-Cache. In our first tests, we place the B-Cache in the Local
Memory with the reason it is the fastest memory of IXP2400.
However, the size limitation makes it impossible to implement
cache which size is larger than 128 entries. Thus, we decide to
store the B-Cache in the SRAM. IXP2400 has two channels of
SRAM interfaces. To balance the memory utilization, we store
data structure of packet processing and B-Cache in the
different channels of SRAM. There is another reason for us to
store the cache in SRAM. The private property of Local
Memory is not easy to implement the shared data structure
among MEs. We believe that the shared cache outperforms
than the distributed one.

C. Cache Entry Design of B-Cache

The B-Cache is an extension of the naïve cache with the
additional field if_blocking which controls the procedure of
packet processing. Because we won’t focus on the cache
algorithm of the B-Cache, this section will focus on the design
of if_blocking.

At first, we use one bit per field to present the processing
state of the B-Cache entry. That is, if the bit is set, other
packets should be delayed to be processed until the bit is clear.
The design is easy to implement; however, it is possible that
several packets which belong to the different burst traffic may
be hashed to the same cache entry (i.e. B-Cache entry
collision). We can’t detect the case with this cache design. In
other words, when the field becomes unset, it is possible that
the unblocked packet still miss-matched the cache which
result in more tag comparisons.

The second design of the field is to store the tag of the
packets which is being processed. This is the design described
in the previous section. As the design, each cache entry will
has two sets of the tag. The first tag is used with the cached
result while the second tag is used to identify which packet is
being processing currently. To achieve this, the second tag
must be as large as the first one (i.e. all of the needed
information are stored in the tag). It needs 104-bits to store the
full tag for the 5-dimensional packet classification. Thus for
the packet processing scheme used in this paper, it will need at
least 208-bits per cache entry. That is too large to adopt in
practice. As the tradeoff, we reference the design in [1] that
the third design of the tag is obtained by hash all of the 104-
bits into 32-bits content using the CRC function. The design
will require less memory than the second one. Besides, the
field can be checked in the least unit of SRAM access. The
miss-classification problem described in [1] will not happen to
us because the original tag will act the exact match cache. As
the result, we adopt the third design in all of the tests which
each B-Cache entry is 20-bytes.

D. Packet Blocking Procedure Design of B-Cache

Another issue of B-Cache is how we done of blocking the
packet from further processing. In this section, we will
propose several architectures to handle this problem.

The proposed cache scheme is developed based on the ENP
SDK [10] Static Forward project which is the example of an
IXP2400 development board ENP-2611 [9]. In the
architecture of the static forward project (Figure 2), the
incoming packets will first receive by a ME (we note as Rx in
this section) and after some simple operating by processing
ME (note as P), the packets will be transmitted out of ENP-
2611 by third ME (note as Tx). With the property of IXP2400,
scratchpad can be programmed as FIFO scratch rings which
can be used for inter-ME communication. In the static forward
project, MEs exchange the information of packets through the
scratch rings. We note the operation that writes the
information of packet into the scratch ring as “enqueue the
packet”. In the other hand, the operation which reads the
information of the packet from the scratch ring is noted as
“dequeue the packet”. As shown in Figure 2, there is a scratch
ring between Rx and P ME. Besides, there are four scratch
rings between P ME and Tx ME – one ring serves per physical
port of ENP-2611. To reduce the space requirement of the
figure, the four rings will be shown as one ring in the rest of
the paper. With the same reason, although it is possible to use
all of the remained six MEs for the packet processing at the
same time, these figures will only show the case that using one
ME.

1) Block Packet Using Original Scratch Ring

The first design is based on the architecture of static
forward project. As in Figure 3, when there is a packet which
needs to be blocking, we enqueue the packet into the scratch
ring which shared by Rx and P ME. This is the only difference
between Figure 2 and 3. After the operation, the thread of P
ME can freely dequeues another packet from the same scratch
ring to handle with it. Because the scratch ring is shared by the

Rx and P ME, lots of packets will be passed with the ring.
With the higher latency of the ring it is difficult that the
subsequent packets which come with the former packet has
been dequeue again before the processing to the former packet
is finished.

When there is a collision of a specific B-Cache entry, which
several packets are desired to update the same B-Cache entry,
it will become a problem. Most of the packets will be cache
miss due to the race condition. Even some of packets will
become the former packets and have a chance to be processed;
however, most of packets will be blocking and enqueue into
scratch ring again and again. In our test, we can’t make this
design workable.

2) Block Packet Using Additional Scratch Ring

Different to the first design which use the original scratch
ring to “buffer” the blocked packets, the second design (Figure
4) allocates another scratch ring (notes as B-Scratch ring) to
temporary store the blocked packets. In the second design, the
P ME has two scratch ring inputs need to be handled but not
only one in the first design. There is an issue that “when” we
should process “which” scratch rings as default. In our design,
we will process the packet from the B-Scratch ring when
previous result of packet processing belongs to case 1 and case
3 of the figure which usually indicates the processing of the
former packet is done. If the result of previous processing
belongs to case 2, we will enqueue the current packet into the
B-Scratch ring and dequeue the new one from the ring shared
by the Rx and P ME. After that, we will dequque the packet
from the B-Scratch Ring until we process a packet which
needs not to be blocking. In our tests, the second design is
workable but performs worse than the naïve cache.

3) Block Packet Without Using Scratch Ring

Figure 2. Architecture of Static Forward Project

Rx Tx P

Rx Tx P

Case2. If_blocking is set, blocking the packet

If_blocking is clear
Case 1. Tag Matched => Return Result Directly
Case 3. Tag Mismatched (Cache Miss) => Real

Processing

Figure 3. Block Packet using Original Scratch Ring

Figure 4. Block Packet using Additional Scratch Ring

Rx Tx P

If_blocking is clear
Case 1. Tag Matched => Return Result Directly

Case 3. Tag Mismatched (Cache Miss) => Real Processing

Case 2. If_blocking is set,
block the packet

Figure 5. Block Packet without using Scratch Ring

Rx Tx P

Case 1. Tag Matched => Return Result
Case 2. Tag Miss + If_blocking is Set =>

Block the packet
Case 3. Tag Miss + If_blocking is not set

=> Real Processing the packet

After implement and test the above two designs, we observe
that the performance does not perform well. With some
studies about the possible reasons, we believe that the
performance is decreased due to the additional enqueue,
dequeue operations and queuing delay. Further more, when
the blocked packet is dequeued again, in our implementation,
the thread which handle the packet need to access the DRAM
again to obtain the packet headers for the packet processing
task we implemented. The task we choose is a 5-dimensional
packet classification scheme, that is, we need to access 104-
bits to determine which operation we should take. We can’t
pass the header by using the scratch ring because it is too large,
although the solution is workable for packet processing task
such as ip lookup. To solve the problem, we propose the third
design of blocking procedure.

As the Figure 5, the third scheme is almost looks like the
original architecture of static forward project that there is no
need of scratch ring to buffer the blocked packets. When a
packet is needed to be blocked, we let the thread which
handles the packet to swap out for a while using ctx_swap
instruction. After the thread has a chance to execute again, we
let the thread to check the field if_blocking again to determine
if it is necessary to block the packet (i.e. swap itself) again. On
the other hand, the procedure of the packet which needs not to
be blocked is just the same as the previous designs. After the
evaluation, we adopt this design and show the result in the
Section V.

V. PERFORMANCE EVALUATION

A. Simulation setup

We simulate all of the codes with IXA SDK 3.5 Developer
Workbench. The code is developed based on the ENP SDK
3.5 R4 Static Forward project. The original project was totally
written in microcode which uses “receive-process-transmit”
programming model. We rewrote the microcode of processing
ME using MicroC [5]. Then, the packet processing scheme
HBSPC and the proposed cache scheme (MicroC) were added
for evaluating. We didn’t change neither the receiving nor
transmit related codes. We modified both the XScale and ME
frequency from 400 MHz to 600 MHz in all tests which is the
same as our ENP-2611.

The data structures used by the HBSPC are pre-computed
using PC. We load the structures into Workbench by scripts.
On the other hand, the structure for the proposed B-Cache is
dynamically maintained by the processing ME. The structure
of HBSPC is stored in channel 1 of SRAM while the proposed
B-Cache is stored in the channel 0 of SRAM. Finally, we use
the traces corresponding to the rule table to generate the
packet streams used in the simulation.

B. 5-D Packet Classification Evaluation Settings

We use ClassBench [12] to produce rule table 5D_5000 for
the tests using the setting: “firewall”. There are 4704 rules in
this table. Other information can be found in Table I, and
parameters to produce the table can be found in Table II.

To test the rule table, we use ClassBench again to produce
two corresponding trace files 5000H and 5000L, where suffix

indicate the locality. That is, 5000H indicates high locality
trace while 5000L indicates low locality trace. We show the
number of packets in each trace in Table III. The settings for

TABLE III . STATISTICS OF SIMULATION TRAFFICS
Name of traces 5000H 5000L

Locality High Low
of Packets 48,09948,113

TABLE II. PARAMETERS USED BY CLASSBENCH TO
GENERATE THE RULE TABLE

db_generator
-bc

<# of
filetrs>

<smoothness><address
scope>

<application
 scope>

5D_5000 5000 58 -0.5 -0.5

TABLE I. RULE TABLE FOR 5-D PACKET CLASSIFICATION

Rule Table 5D_5000
Number of Rules 4704

Number of different Destination Address 212
Number of different Source Address 65
Number of different Destination Port 49

Number of different Source Port 28
Number of different Protocol 9

TABLE IV. PARAMETERS USED BY CLASSBENCH TO
GENERATE THE SIMULATION TRAFFICS

 <Pareto parameter a><Pareto parameter b><scale>
5000H 1 1 10
5000L 1 0.1 10

TABLE V THROUGHPUT OF HBSPC WITH THE
PROPOSED CACHE SCHEMES (MPPS)

Scheme Cache Size 1ME2ME 3ME4ME5ME6ME
High Locality Traffic (5000H)

No-Cache 0 1.35 2.67 3.83 4.50 4.70 4.73
128 3.19 5.18 6.45 6.45 6.46 6.46
256 3.24 5.30 6.45 6.45 6.46 6.46
512 3.25 5.32 6.45 6.45 6.46 6.46
1024 3.28 5.41 6.45 6.46 6.46 6.46

Naïve
Cache

2048 3.34 5.52 6.45 6.46 6.46 6.46
128 3.56 5.95 6.45 6.46 6.46 6.46
256 3.56 6.00 6.45 6.46 6.46 6.46
512 3.60 6.08 6.45 6.46 6.46 6.46
1024 3.62 6.17 6.45 6.46 6.46 6.46

B-Cache

2048 3.66 6.22 6.45 6.46 6.46 6.46
Low Locality Traffic (5000L)

No-Cache 0 1.33 2.65 3.83 4.62 4.91 4.97
128 1.83 3.46 4.87 5.86 6.18 6.24
256 1.84 3.49 4.94 5.92 6.24 6.30
512 1.86 3.55 5.04 5.99 6.33 6.39
1024 1.90 3.62 5.15 6.11 6.43 6.45

Naïve
Cache

2048 1.96 3.75 5.32 6.26 6.46 6.46
128 1.86 3.59 5.20 6.21 6.46 6.46
256 1.88 3.64 5.26 6.29 6.46 6.46
512 1.90 3.68 5.31 6.38 6.46 6.46
1024 1.93 3.74 5.42 6.45 6.46 6.46

B-Cache

2048 1.99 3.87 5.61 6.46 6.46 6.46

producing these traces are shown in Table IV. All packets in
above traces are 64 bytes. With the smallest size of Ethernet
packets, we can observe the worst case performance of
evaluated cache scheme.

C. Proposed B-Cache Evaluation

1) Throughput of HBSPC enhance by the B-Cache

The line speed of IXP2400 is OC-48, i.e. 2.5 Gbps. With
the traffic which size of each packet is 64 bytes, IXP2400
should process 6.46 Million packets per second to achieve the
maximum rate. We expect the evaluated cache scheme can
achieve such throughput. Table V shows the throughput
(number of million packet processes per second) of the
proposed scheme using two kinds of traffic. The table
compares the case with no-cache, naïve cache, and the
proposed B-Cache. For the naïve cache and the B-Cache, we
evaluate the cases which the cache size ranges from 128 to
2048. Different column of the table show the throughput using
from one to six MEs for packet processing. We mark the case
which achieves the maximum rate of IXP2400 whose
background color as gray.

As the table, HBSPC can’t achieve line rate without using
the cache whether how many MEs are used. It can be seen that
naïve cache improves the throughput of HBSPC for high
locality traffic dramatically thus we can achieve the line speed
when using more than three MEs. However, it is hard for the
naïve Cache to achieve the same speed when using the low
locality traffic. On the other hand, the goal can be achieved
when we adopt the proposed B-Cache. The most important is
that the throughput of HBSPC enhances with B-Cache
becomes higher than the naïve cache when using high locality
traffic. It is important that the B-Cache is just an additional
cache scheme which solves the duplicate processing problem
which other threads repeat handles the packet before the cache
entry has been updated.

2) Reduction of memory access of HBSPC

It is obviously that the scheme requires less access to the
memory performs better. Table VI compares the reduction of
memory access to the HBSPC structure of B-Cache to the
naïve cache. The table shows the reduction percentage with
cache size from 128 to 2048 which only one ME is used for
packet processing. The table presents the same trend as the

Table V that the proposed B-Cache outperforms the naïve
cache even with the low locality traces. The proposed B-
Cache can reduce about 9% of memory access of packet
processing with the evaluated high locality trace. For the low
locality trace, the reduction is increased with the cache size.
With the presented experiments, we believe that the proposed
B-Cache can further enhance the throughput of packet
processing in the multi-thread network processor environment.

VI. CONCLUSION

In this paper, we first implement a naïve cache scheme to
improve the performance of HBSPC packet classification
scheme. Basically, the cache scheme can solve the redundant
processing problem to the busty traffic briefly. However, due
to the Intel IXP2400 is a multi-thread processor that several
threads are executes concurrently. It is possible that other
threads will duplicate the processing of the packet due to
cache miss before the cache is updated completely. In the case,
the redundant processing to the packet will wasted computing
power and involves additional memory access to the data
structure. The B-Cache proposes in this paper solve this
problem by blocking such packets from being processed until
the cache is updated. With the proposed scheme, further
throughput can be achieved on the IXP2400.
[1] Francis Chang, Wu-chang Feng, Wu-chi Feng, and Kang Li, "Efficient

Packet Classification of Digest Caches", Proc. of the Third Workshop on
Network Processors & Applications (NP3), February 2004.

[2] Yeim-Kuan Chang, “Fast Binary and Multiway Prefix Searches for
Packet Forwarding”, Computer Networks, Volume 51, Issue 3, pp. 588-
605, February 2007.

[3] Yeim-Kuan Chang, “Efficient Multidimensional Packet Classification
with Fast Updates”, Accepted in IEEE Transactions on Computers.

[4] Intel Corporation, “Intel® IXP2400 Network Processor Hardware
Reference Manual”, November 2003.

[5] Intel Corporation, “Intel® IXP2400/IXP2800 Network Processors
Microengine C Language Support Reference Manual”, November 2003.

[6] Zhen Liu, Hao Che, Kai Zheng, Shanzhen Chen, Chengchen Hu and Bin
Liu, “A Trace Driven Comparison of Latency Hiding Techniques for
Network Processors”, Proc. of the IEEE ICC 2006, pp. 122-127, June
2006.

[7] Z. Liu, K. Zheng and B. Liu, “Hybrid cache architecture for high-speed
packet processing”, Computers & Digital Techniques, IET, Volume1,
Issue 2, March 2007.

[8] Zhen Liu, Jia Yu, Xiaojun Wang, Bin Liu, and Laxmi Bhuyan,
“Revisiting the Cache Effect on Multicore Multithreaded Network
Processors”, Proc. of the IEEE DSD 2008, pp. 317-324, Sepetmber 2008.

[9] RadiSys Corporation, “ENP-2611 Hardware Reference”, August 2003.
[10] RadiSys Corporation, “ENP Software Development Kit Programmer’s

Guide”, April 2004.
[11] David E. Taylor, “Survey and Taxonomy of Packet Classification

Techniques”, ACM Computing Surveys, Volume 37, Issue 3, pp. 238-
275, September 2005.

[12] David E. Taylor and Jonathan S. Turner, “ClassBench: A Packet
Classification Benchmark”, IEEE/ACM Transactions on Networking,
Volume 15, Issue 3, pp. 499-511, June 2007.

TABLE VI THE PERCENTAGE OF MEMORY ACCESS REDUCTION
TO THE HBSPC STRUCTURE (%)

Cache Size 128 256 512 1024 2048
High Locality Traffic (5000H)

Naïve 75.20 75.55 75.84 76.20 76.88
Proposed 84.37 84.33 84.44 84.64 85.01

Low Locality Traffic (5000L)
Naïve 43.01 43.72 44.83 46.26 48.78

Proposed 46.94 47.59 48.59 49.92 52.18

